Linear Function in Coordinate System

A complex function in one coordinate system can be simple in other systems.

Basic Idea

Simple Function

Another
coordinate
system

Cartesian coordinate system

Input'
output'

Output
Complex Function

Basic Idea

夢境
Another
coordinate
system

小開的父親說：

＂I＇m disappointed that you＇re trying so hard to be me．＂Simple Function

Input＇

output＇

清醒
做夢
Cartesian coordinate system

現實

Input
Complex Function

說服小開解散公司

Sometimes a function can be complex

- T : reflection about a line L through the origin in R^{2}

Sometimes a function can be complex

- T: reflection about a line L through the origin in R^{2}
special case: L is the horizontal axis

$$
\begin{gathered}
T^{\prime}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=?\left[\begin{array}{c}
x_{1} \\
-x_{2}
\end{array}\right] \\
{\left[T^{\prime}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]} \\
T^{\prime}\left(e_{1}\right) \quad T^{\prime}\left(e_{2}\right) \\
=e_{1} \quad=-e_{2}
\end{gathered}
$$

Describing the function in another coordinate system

- T : reflection about a line L through the origin in R^{2}

In another coordinate system B

Describing the function in another coordinate system

- T : reflection about a line L through the origin in R^{2}

In another coordinate system B

$$
[T]_{\mathrm{B}}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Flowchart

$$
[T]_{\mathrm{B}}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

reflection about the horizontal line

$$
[T]=?
$$

v
reflection about a line L

Flowchart

$\left.{ }^{[v}\right]_{B}$

B coordinate system

Cartesian $\quad B^{-1}$ coordinate system

v

- Example: reflection operator T about the line $y=(1 / 2) x$

$$
\begin{aligned}
& \underbrace{}_{b}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& B^{-1}=\left[\begin{array}{cc}
0.4 & 0.2 \\
-0.2 & 0.4
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right] \\
& {[v]_{\mathrm{B}} \xrightarrow{[T]_{\mathrm{B}}}[T(v)]_{\mathrm{B}}} \\
& \begin{array}{ccc}
\\
\left.B^{-1} \begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] & \\
& & B \\
v & {[T]=?} & \\
& & T(v)
\end{array} \\
& {[T]=B[T]_{\mathrm{B}} B^{-1}}
\end{aligned}
$$

- Example: reflection operator T about the line $y=(1 / 2) x$

$$
\begin{gathered}
{[T]=\left[\begin{array}{cc}
0.6 & 0.8 \\
0.8 & -0.6
\end{array}\right]} \\
c_{2}=\left[\begin{array}{c}
-0.5 \\
1
\end{array}\right]
\end{gathered} B^{-1}=\left[\begin{array}{cc}
0.4 & 0.2 \\
-0.2 & 0.4
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]
$$

Example (P279)

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
3 x_{1}+x_{3} \\
x_{1}+x_{2} \\
-x_{1}-x_{2}+3 x_{3}
\end{array}\right] \quad \mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right\} \\
& {[T]_{\mathrm{B}}=\text { ? }}
\end{aligned}
$$

Example (P279) Determine T

$$
\begin{aligned}
& \left.T\left(\underset{\mathbf{b}_{1}}{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]}\right)=\underset{\mathbf{c}_{1}}{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]} \underset{\mathbf{b}_{2}}{T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right.}\right)=\underset{\mathbf{c}_{2}}{\left[\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right]} T \underset{\mathbf{b}_{3}}{\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]}
\end{array}\right)}=\underset{\mathbf{c}_{3}}{\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]} \\
& \mathbf{e}_{1} \quad \mathbf{e}_{2} \mathbf{e}_{\mathbf{3}} \quad[v]_{B} \\
& { }_{[T]}{ }_{\mathrm{B}} \\
& b_{1}, b_{2}, b_{3} \text { as a } \\
& \text { coordinate system } \\
& \left\{b_{1}, b_{2}, b_{3}\right\} \text { is a } \\
& \text { basis of } R^{3}
\end{aligned}
$$

Example (P279) Determine T

$$
\begin{aligned}
& {[T]_{\mathrm{B}}=\left[\begin{array}{lll}
B^{-1} C_{1} & B^{-1} C_{2} & B^{-1} C_{3}
\end{array}\right]=B^{-1} C} \\
& {[T]=B[T]_{\mathrm{B}} B^{-1}=B B^{-1} C B^{-1}=C B^{-1}}
\end{aligned}
$$

$\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \quad[v]_{\mathrm{B}}$
$[T(v)]_{\mathrm{B}} \quad \mathrm{B}^{-1} \mathrm{c}_{1} \mathrm{~B}^{-1} \mathrm{c}_{2} \mathrm{~B}^{-1} \mathrm{c}_{3}$
b_{1}, b_{2}, b_{3} as a coordinate system $\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of R^{3}

$$
\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} v \quad[1] \quad T(v) \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3}
$$

Conclusion

B coordinate system

Cartesian coordinate system
$\left.{ }^{[T]}\right]_{B}$
${ }^{[v]_{B}}$ \uparrow
$[T(v)]_{B}$

$$
[T]_{\mathrm{B}}=B^{-1} A B
$$

$$
\begin{aligned}
& B^{-1} \\
& {[T]=B[T]_{B} B^{-1}}
\end{aligned}
$$

